Germination of wheat seedlings and treatment with a Biophoton Therapy device according to J. Boswinkel - Influence of information from a growth hormone (giberellic acid)

Author: Baars, W.J.A.M.
Supervisor: Endler, P.C.

1. SUMMARY

1.1. Introduction

Several studies have already shown the effect of information medicine on wheat germination, mainly by influencing/treating the water the seedlings were treated with. (Baumgartner, 2008, Pfleger, 2008, Reischl, 2009) This study specifically aims at observing the effect when treating the water with an electronic device (biophoton therapy device J. Boswinkel).

To find if information transferred by the electronic device has any effect, a research was performed on wheat seedlings.

1.2. Research Question

Is there an effect to be found on wheat seedling germination after treating water with an electronic device (“biophoton therapy device J. Boswinkel”)? And, as a sub question, are there differences in effect when specific information is added to the water by means of this device?

1.3. Methods

1.3.1. Design

In this fundamental research 3 sets of 24 dishes each were prepared. In these 3 sets wheat seedlings were observed, one where we used water treated with a standard program (1, “BTO”), one with water treated with a standard program plus the information of giberellic acid, a plant growth hormone, was added (2, “BTGib”), and one with non-treated water (3, “WO”).

Four germination stages were observed during interval times for 40 hours. Results were analyzed by means of analysis of variance.
1.3.2. Participants

Baars, W.J.A.M. (researcher)
Van Huijstee, B. G. (assistant)

1.3.3. Materials

Experiments were performed on wheat (Triticum aestivum, Capo variety, Heinz farming, Weiss, Austria) grain grown without herbicides or pesticides. Around 10% of the grains were ruptured and around 10% were distorted, and these were all removed prior to the experiment. A total of 1440 seedlings were used. Furthermore, we used normal tap water, 72 disposable dishes, filter paper (Whatman, cellulose, 90 mm, sort 2), 1 drawer box with 9 drawers, 3 sterilized water containers, aluminum foil (brand Huismerk AH) and the electronic device (Biophoton Therapy Device J. Boswinkel).

1.4. Performance of the Study

The 3 differently treated sets of wheat seedlings were observed every 4 hours, discriminating 4 stages of growth: 2 germination stages, and 2 rooting stages.

1.4.1. Statistical Analysis

Results were analyzed by means of analysis of variance.

1.5. Results

The results indicate that in all stages the seedlings treated with the basic program only (BT0) lacked behind both the seedlings treated with information of gibberelllic acid (BTGib) and the control group (W0).

The seedlings treated with the extra information of gibberellic acid initially lack behind the control group (but outperform the basic program group) in every stage, but catch up at the end of every growth stage.

Most significant results happened at germination stage 2. (see figure 1).

In germination stage 2 there is significantly less germination in the BT0 group, but better germination in the BTGib group at mp7 (p < 0.00 between group 1 and 2) and at mp8 (p < 0.05 between group 1 and 2). (see figure 3).
1.6.Discussion

1.6.1.Interpretation of Results

Experiments showed stimulated wheat development under the influence of test probes prepared from giberellic acid with the help of an electronic device (“Biophoton therapy device J. Boswinkel”) compared to analogous water control. Stimulated wheat development under the influence of just the electronic device (“Biophoton therapy device J. Boswinkel”) with no information added showed a weaker response compared to control.

1.6.2.Conclusions with regard to the research problem and the state of knowledge

We see a confirmation here of the phenomenon that information added to water can significantly influence wheat seedling development. (see Baumgartner, 2008, Endler, 2007, Pfleger, 2008)

1.6.3.Self-Critical Remarks

Further repetition of experiments is necessary before the results can be generally accepted.
1.7. References


Belousov, L. V., Burlakov, A. B., & Luchinskaia, N. N. [Statistical and frequency-amplitude characteristics of ultra weak emissions of the loach eggs and embryos under the normal conditions and during their optic interactions. I. Characteristics of ultra weak emission in normal development and the optic role of egg envelope]. Ontogenez, 33(3), 213-221; 2002.


Bischof M., Biophotonen, Das Licht in unsere Zellen, 2008.


Gurwitsch A.; History of Biophotonik or Biophotonics from a German point of view regarding Gurwitsch Bibliography under Gurwitsch and also Ruth (1977, 1979)

Lenger, K; Bajpai, RP; Drexel, M. Delayed luminescence of high homeopathic potencies on sugar globuli, Homeopathy 97, 134-140 (2008)


Popp F.A., About the coherence of Biophotons, 1999; http://www.lifescientists.de/ib0204e_1.htm ; also Published in: Macroscopic Quantum Coherence, Proceedings of an International Conference on the Boston University, edited by Boston University and MIT, World Scientific 1999

Popp F.A., Life interview for Science and Spirituality television station on Youtube, 2008, especially last 8 minutes

Different articles on ongoing research on Biophotons, Website International Institute of Biophysics, Neuss, Germany at www.lifescientists.de

Websites:

www.biontology.com
http://www.lifescientists.de/ib_004e2.htm
http://www.youtube.com/watch?v=zcmaMV1TETU
http://www.lifescientists.de/history.htm